Codimension bounds for the Noether–Lefschetz components for toric varieties

نویسندگان

چکیده

Abstract For a quasi-smooth hypersurface X in projective simplicial toric variety $$\mathbb {P}_{\Sigma }$$ P Σ , the morphism $$i^*:H^p(\mathbb })\rightarrow H^p(X)$$ i ∗ : H p ( ) → X induced by inclusion is injective for $$p=\dim X$$ = dim and an isomorphism $$p<\dim X-1$$ < - 1 . This allows one to define Noether–Lefschetz locus $$\mathrm{NL}_{\beta NL β as of hypersurfaces degree $$\beta $$ such that $$i^*$$ acting on middle algebraic cohomology not isomorphism. We prove that, under some assumptions, if $$\dim \mathbb }=2k+1$$ 2 k + $$k\beta -\beta _0=n\eta 0 n η $$n\in {N}$$ ∈ N where $$\eta class 0-regular ample divisor, _0$$ anticanonical class, every irreducible component V satisfies bounds $$n+1\leqslant \mathrm{codim}\,Z \leqslant h^{k-1,\,k+1}(X)$$ ⩽ codim Z h ,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Codimension Theorem for Complete Toric Varieties

Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we study the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous elements that don’t vanish simultaneously on X. Introduction In this paper, X will denote a complete toric variety of dimension n. We will work over C, so that the torus of X is (C). The dual lattices will be de...

متن کامل

Codimension Theorems for Complete Toric Varieties

Let X be a complete toric variety with homogeneous coordinate ring S. In this article, we compute upper and lower bounds for the codimension in the critical degree of ideals of S generated by dim(X) + 1 homogeneous polynomials that don’t vanish simultaneously on X. Introduction In this paper, X will denote a complete toric variety of dimension n. We will work over C, so that the torus of X is (...

متن کامل

Deformations of Codimension 2 Toric Varieties

We prove Sturmfels’ conjecture that toric varieties of codimension two have no other flat deformations than those obtained by Gröbner basis theory.

متن کامل

On Simplicial Toric Varieties of Codimension 2

We describe classes of toric varieties of codimension 2 which are either minimally defined by codim V +1 binomial equations over any algebraically closed field, or set-theoretic complete intersections in exactly one positive characteristic .

متن کامل

Vanishing and Codimension Theorems for Complete Toric Varieties

In this article, we prove a vanishing theorem for H(X,OX(−D)) when D is a nef Cartier divisor on a complete toric variety X. The answer depends on the dimension of the polytope associated to D. We then apply this to the homogeneous coordinate ring of X, where we study the codimension in the critical degree of ideals generated by dim(X) + 1 homogeneous elements which don’t vanish simultaneously ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European journal of mathematics

سال: 2021

ISSN: ['2199-675X', '2199-6768']

DOI: https://doi.org/10.1007/s40879-021-00461-0